Water Flow Prediction Based on Improved Spatiotemporal Attention Mechanism of Long Short-Term Memory Network

Author:

Hu Wenwen1ORCID,Yu Yongchuan1,Yan Jianzhuo1,Zhao Zhe2,Sun Wenxue2,Shen Xumeng1

Affiliation:

1. College of Information and Communication Engineering, Beijing University of Technology, Beijing 100124, China

2. Beijing South-North Water Diversion Tuancheng Lake Management Office, Beijing 100097, China

Abstract

The prediction of water plant flow should establish relationships between upstream and downstream hydrological stations, which is crucial for the early detection of flow anomalies. Long Short-Term Memory Networks (LSTMs) have been widely applied in hydrological time series forecasting. However, due to the highly nonlinear and dynamic nature of hydrological time series, as well as the intertwined coupling of data between multiple hydrological stations, the original LSTM models fail to simultaneously consider the spatiotemporal correlations among input sequences for flow prediction. To address this issue, we propose a novel flow prediction method based on the Spatiotemporal Attention LSTM (STA-LSTM) model. This model, based on an encoder–decoder architecture, integrates spatial attention mechanisms in the encoder to adaptively capture hydrological variables relevant to prediction. The decoder combines temporal attention mechanisms to better propagate gradient information and dynamically discover key encoder hidden states from all time steps within a window. Additionally, we construct an extended dataset, which preprocesses meteorological data with forward filling and rainfall encoding, and combines hydrological data from multiple neighboring pumping stations with external meteorological data to enhance the modeling capability of spatiotemporal relationships. In this paper, the actual production data of pumping stations and water plants along the East-to-West Water Diversion Project are taken as examples to verify the effectiveness of the model. Experimental results demonstrate that our STA-LSTM model can better capture spatiotemporal relationships, yielding improved prediction performance with a mean absolute error (MAE) of 3.57, a root mean square error (RMSE) of 4.61, and a mean absolute percentage error (MAPE) of 0.001. Additionally, our model achieved a 3.96% increase in R2 compared to the baseline model.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3