Mutant-Dependent Local Orientational Correlation in Biofilms of Vibrio campbellii Revealed through Digital Processing of Light Microscopy Images

Author:

Cesaria Maura1ORCID,Calcagnile Matteo2ORCID,Alifano Pietro2,Cataldo Rosella2ORCID

Affiliation:

1. Department of Mathematics and Physics Ennio De Giorgi, University of Salento-c/o Campus Ecotekne, Via per Arnesano, 73100 Lecce, Italy

2. Department of Biological and Environmental Sciences and Technologies (Di.S.Te.BA.), University of Salento-c/o Campus Ecotekne—S.P. 6, 73100 Lecce, Italy

Abstract

Biofilms are key bacterial communities in genetic and adaptive resistance to antibiotics as well as disease control strategies. The mature high-coverage biofilm formations of the Vibrio campbellii strains (wild type BB120 and isogenic derivatives JAF633, KM387, and JMH603) are studied here through the unstraightforward digital processing of morphologically complex images without segmentation or the unrealistic simplifications used to artificially simulate low-density formations. The main results concern the specific mutant- and coverage-dependent short-range orientational correlation as well as the coherent development of biofilm growth pathways over the subdomains of the image. These findings are demonstrated to be unthinkable based only on a visual inspection of the samples or on methods such as Voronoi tessellation or correlation analyses. The presented approach is general, relies on measured rather than simulated low-density formations, and could be employed in the development of a highly efficient screening method for drugs or innovative materials.

Funder

Regione Puglia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference65 articles.

1. How Bacteria Stick;Costerton;Sci. Am.,1978

2. Biofilms: An emergent form of bacterial life;Flemming;Nat. Rev. Microbiol.,2016

3. The biofilm matrix;Flemming;Nat. Rev. Microbiol.,2010

4. Surviving as a Community: Antibiotic Tolerance and Persistence in Bacterial Biofilms;Yan;Cell Host Microbe,2019

5. Physical methods for controlling bacterial colonization on polymer surfaces;Echeverria;Biotechnol. Adv.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3