Theoretical Study of Hydroxylation of α- and β-Pinene by a Cytochrome P450 Monooxygenase Model

Author:

Shaya Janah1ORCID,Aloum Lujain2ORCID,Lu Chung-Shin3,Corridon Peter R.456ORCID,Aoudi Abdulrahman1ORCID,Shunnar Abeer1,Alefishat Eman267ORCID,Petroianu Georg2ORCID

Affiliation:

1. Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates

2. Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates

3. Department of General Education, National Taichung University of Science and Technology, Taichung 404, Taiwan, China

4. Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates

5. Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi 127788, United Arab Emirates

6. Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates

7. Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11972, Jordan

Abstract

Previous studies on biocatalytic transformations of pinenes by cytochrome P450 (CYP) enzymes reveal the formation of different oxygenated products from a single substrate due to the multistate reactivity of CYP and the many reactive sites in the pinene scaffold. Up until now, the detailed mechanism of these biocatalytic transformations of pinenes have not been reported. Hereby, we report a systematic theoretical study of the plausible hydrogen abstraction and hydroxylation reactions of α- and β-pinenes by CYP using the density functional theory (DFT) method. All DFT calculations in this study were based on B3LYP/LAN computational methodology using the Gaussian09 software. We used the B3LYP functional with corrections for dispersive forces, BSSE, and anharmonicity to study the mechanism and thermodynamic properties of these reactions using a bare model (without CYP) and a pinene-CYP model. According to the potential energy surface and Boltzmann distribution for radical conformers, the major reaction products of CYP-catalyzed hydrogen abstraction from β-pinene are the doublet trans (53.4%) and doublet cis (46.1%) radical conformer at delta site. The formation of doublet cis/trans hydroxylated products released a total Gibbs free energy of about 48 kcal/mol. As for alpha pinene, the most stable radicals were trans-doublet (86.4%) and cis-doublet (13.6%) at epsilon sites, and their hydroxylation products released a total of ~50 kcal/mol Gibbs free energy. Our results highlight the likely C-H abstraction and oxygen rebounding sites accounting for the multi-state of CYP (doublet, quartet, and sextet spin states) and the formation of different conformers due to the presence of cis/trans allylic hydrogen in α-pinene and β-pinene molecules.

Funder

College of Medicine and Health Sciences, Khalifa University of Science and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3