Development of an Anti-Idiotype Aptamer-Based Electrochemical Sensor for a Humanized Therapeutic Antibody Monitoring

Author:

Nagata Madoka12,Lee Jinhee1ORCID,Saito Taro2,Ikebukuro Kazunori2ORCID,Sode Koji1ORCID

Affiliation:

1. Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA

2. Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan

Abstract

Therapeutic monoclonal antibodies (mAbs) are currently the most effective medicines for a wide range of diseases. Therefore, it is expected that easy and rapid measurement of mAbs will be required to improve their efficacy. Here, we report an anti-idiotype aptamer-based electrochemical sensor for a humanized therapeutic antibody, bevacizumab, based on square wave voltammetry (SWV). With this measurement procedure, we were able to monitor the target mAb within 30 min by employing the anti-idiotype bivalent aptamer modified with a redox probe. A fabricated bevacizumab sensor achieved detection of bevacizumab from 1–100 nM while eliminating the need for free redox probes in the solution. The feasibility of monitoring biological samples was also demonstrated by detecting bevacizumab in the diluted artificial serum, and the fabricated sensor succeeded in detecting the target covering the physiologically relevant concentration range of bevacizumab. Our sensor contributes to ongoing efforts towards therapeutic mAbs monitoring by investigating their pharmacokinetics and improving their treatment efficacy.

Funder

Joint Department of Biomedical Engineering

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3