Affiliation:
1. School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ 85721, USA
Abstract
ZIP8 is a newly identified manganese transporter. A lack of functional ZIP8 results in severe manganese deficiency in both humans and mice, indicating that ZIP8 plays a crucial role in maintaining body manganese homeostasis. Despite a well-acknowledged connection between ZIP8 and manganese metabolism, how ZIP8 is regulated under high-manganese conditions remains unclear. The primary goal of this study was to examine the regulation of ZIP8 by high-manganese intake. We used both neonatal and adult mouse models in which mice were supplied with dietary sources containing either a normal or a high level of manganese. We discovered that high-manganese intake caused a reduction in liver ZIP8 protein in young mice. Since a decrease in hepatic ZIP8 leads to reduced manganese reabsorption from the bile, our study identified a novel mechanism for the regulation of manganese homeostasis under high-manganese conditions: high dietary manganese intake results in a decrease in ZIP8 in the liver, which in turn decreases the reabsorption of manganese from the bile to prevent manganese overload in the liver. Interestingly, we found that a high-manganese diet did not cause a decrease in hepatic ZIP8 in adult animals. To determine the potential reason for this age-dependent variation, we compared the expressions of liver ZIP8 in 3-week-old and 12-week-old mice. We found that liver ZIP8 protein content in 12-week-old mice decreases when compared with that of 3-week-old mice under normal conditions. Overall, results from this study provide novel insights to facilitate the understanding of ZIP8’s function in regulating manganese metabolism.
Funder
National Institutes of Health
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献