Genome-Wide Identification of Expansin Gene Family and Their Response under Hormone Exposure in Ginkgo biloba L.

Author:

Guo Fangyun12,Guo Jing12,El-Kassaby Yousry A.3ORCID,Wang Guibin12

Affiliation:

1. College of Forestry, Nanjing Forestry University, Nanjing 210037, China

2. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

3. Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Abstract

Expansins are pH-dependent enzymatic proteins that irreversibly and continuously facilitate cell-wall loosening and extension. The identification and comprehensive analysis of Ginkgo biloba expansins (GbEXPs) are still lacking. Here, we identified and investigated 46 GbEXPs in Ginkgo biloba. All GbEXPs were grouped into four subgroups based on phylogeny. GbEXPA31 was cloned and subjected to a subcellular localization assay to verify our identification. The conserved motifs, gene organization, cis-elements, and Gene Ontology (GO) annotation were predicted to better understand the functional characteristics of GbEXPs. The collinearity test indicated segmental duplication dominated the expansion of the GbEXPA subgroup, and seven paralogous pairs underwent strong positive selection during expansion. A majority of GbEXPAs were mainly expressed in developing Ginkgo kernels or fruits in transcriptome and real-time quantitative PCR (qRT-PCR). Furthermore, GbEXLA4, GbEXLA5, GbEXPA5, GbEXPA6, GbEXPA8, and GbEXPA24 were inhibited under the exposure of abiotic stresses (UV-B and drought) and plant hormones (ABA, SA, and BR). In general, this study expanded our understanding for expansins in Ginkgo tissues’ growth and development and provided a new basis for studying GbEXPs in response to exogenous phytohormones.

Funder

Key Research and Development Program Projects of Jiangsu Province

National Natural Science Foundation of China

the Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3