Canonical Wnt Pathway Is Involved in Chemoresistance and Cell Cycle Arrest Induction in Colon Cancer Cell Line Spheroids

Author:

Moreno-Londoño Angela Patricia1,Castañeda-Patlán María Cristina1,Sarabia-Sánchez Miguel Angel1,Macías-Silva Marina2ORCID,Robles-Flores Martha1ORCID

Affiliation:

1. Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico

2. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico

Abstract

The presence of cancer stem cells (CSCs) has been associated with the induction of drug resistance and disease recurrence after therapy. 5-Fluorouracil (5FU) is widely used as the first-line treatment of colorectal cancer (CRC). However, its effectiveness may be limited by the induction of drug resistance in tumor cells. The Wnt pathway plays a key role in the development and CRC progression, but it is not clearly established how it is involved in CSCs resistance to treatment. This work aimed to investigate the role played by the canonical Wnt/β-catenin pathway in CSCs resistance to 5FU treatment. Using tumor spheroids as a model of CSCs enrichment of CRC cell lines with different Wnt/β-catenin contexts, we found that 5FU induces in all CRC spheroids tested cell death, DNA damage, and quiescence, but in different proportions for each one: RKO spheroids were very sensitive to 5FU, while SW480 were less susceptible, and the SW620 spheroids, the metastatic derivative of SW480 cells, displayed the highest resistance to death, high clonogenic capacity, and the highest ability for regrowth after 5FU treatment. Activating the canonical Wnt pathway with Wnt3a in RKO spheroids decreased the 5FU-induced cell death. But the Wnt/β-catenin pathway inhibition with Adavivint alone or in combination with 5FU in spheroids with aberrant activation of this pathway produced a severe cytostatic effect compromising their clonogenic capacity and diminishing the stem cell markers expression. Remarkably, this combined treatment also induced the survival of a small cell subpopulation that could exit the arrest, recover SOX2 levels, and re-grow after treatment.

Funder

Universidad Nacional Autónoma de México

CONACYT

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3