Affiliation:
1. Department of Cell Biology and Genetics, School of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
Abstract
Extracellular vesicles (EVs) from allogeneic-tissue-derived mesenchymal stem cells (MSCs) are promising to improve Sjögren’s syndrome (SS) treatment, but their application is hindered by high variations in and limited expandability of tissue MSCs. We derived standardized and scalable MSCs from iPS cells (iMSCs) and reported that EVs from young but not aging iMSCs (iEVs) inhibited sialadenitis onset in SS mouse models. Here, we aim to determine cellular mechanisms and optimization approaches of SS-inhibitory effects of iEVs. In NOD.B10.H2b mice at the pre-disease stage of SS, we examined the biodistribution and recipient cells of iEVs with imaging, flow cytometry, and qRT-PCR. Intravenously infused iEVs accumulated in the spleen but not salivary glands or cervical lymph nodes and were mainly taken up by macrophages. In the spleen, young but not aging iEVs increased M2 macrophages, decreased Th17 cells, and changed expression of related immunomodulatory molecules. Loading miR-125b inhibitors into aging iEVs significantly improved their effects on repressing sialadenitis onset and regulating immunomodulatory splenocytes. These data indicated that young but not aging iEVs suppress SS onset by regulating immunomodulatory splenocytes, and inhibiting miR-125b in aging iEVs restores such effects, which is promising to maximize production of effective iEVs from highly expanded iMSCs for future clinical application.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Reference45 articles.
1. Treatment of primary Sjogren syndrome;Saraux;Nat. Rev. Rheumatol.,2016
2. Sjogren syndrome;Baldini;Nat. Rev. Dis. Prim.,2016
3. Management of Sjogren’s Syndrome: Present Issues and Future Perspectives;Vitali;Front. Med.,2021
4. Harrell, C.R., Fellabaum, C., Jovicic, N., Djonov, V., Arsenijevic, N., and Volarevic, V. (2019). Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. Cells, 8.
5. Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjogren syndrome;Xu;Blood,2012
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献