Affiliation:
1. Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
Abstract
Wistar-Kyoto rats (WKY), compared to Wistar rats, are a well-validated animal model for drug-resistant depression. Thanks to this, they can provide information on the potential mechanisms of treatment-resistant depression. Since deep brain stimulation in the prefrontal cortex has been shown to produce rapid antidepressant effects in WKY rats, we focused our study on the prefrontal cortex. Using quantitative autoradiography, we observed a decrease in the binding of [3H] methylspiperone to the dopamine D2 receptor, specifically in that brain region—but not in the striatum, nor the nucleus accumbens—in WKY rats. Further, we focused our studies on the expression level of several components associated with canonical (G proteins), as well as non-canonical, D2-receptor-associated intracellular pathways (e.g., βarrestin2, glycogen synthase kinase 3 beta—Gsk-3β, and β-catenin). As a result, we observed an increase in the expression of mRNA encoding the regulator of G protein signaling 2-RGS2 protein, which is responsible, among other things, for internalizing the D2 dopamine receptor. The increase in RGS2 expression may therefore account for the decreased binding of the radioligand to the D2 receptor. In addition, WKY rats are characterized by the altered signaling of genes associated with the dopamine D2 receptor and the βarrestin2/AKT/Gsk-3β/β-catenin pathway, which may account for certain behavioral traits of this strain and for the treatment-resistant phenotype.
Funder
Statutory Funds of the Maj Institute of Pharmacology Polish Academy of Sciences
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献