Attenuation of Ventilation-Enhanced Epithelial–Mesenchymal Transition through the Phosphoinositide 3-Kinase-γ in a Murine Bleomycin-Induced Acute Lung Injury Model

Author:

Li Li-Fu1234ORCID,Yu Chung-Chieh1234,Huang Chih-Yu1234ORCID,Wu Huang-Pin123ORCID,Chu Chien-Ming123,Liu Ping-Chi124,Liu Yung-Yang567

Affiliation:

1. Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan

2. Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan

3. Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung 20401, Taiwan

4. Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 20401, Taiwan

5. Chest Department, Taipei Veterans General Hospital, Taipei 112201, Taiwan

6. School of Medicine, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan

7. Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan

Abstract

Mechanical ventilation (MV) used in patients with acute lung injury (ALI) induces lung inflammation and causes fibroblast proliferation and excessive collagen deposition—a process termed epithelial–mesenchymal transition (EMT). Phosphoinositide 3-kinase-γ (PI3K-γ) is crucial in modulating EMT during the reparative phase of ALI; however, the mechanisms regulating the interactions among MV, EMT, and PI3K-γ remain unclear. We hypothesized that MV with or without bleomycin treatment would increase EMT through the PI3K-γ pathway. C57BL/6 mice, either wild-type or PI3K-γ-deficient, were exposed to 6 or 30 mL/kg MV for 5 h after receiving 5 mg/kg AS605240 intraperitoneally 5 days after bleomycin administration. We found that, after bleomycin exposure in wild-type mice, high-tidal-volume MV induced substantial increases in inflammatory cytokine production, oxidative loads, Masson’s trichrome staining level, positive staining of α-smooth muscle actin, PI3K-γ expression, and bronchial epithelial apoptosis (p < 0.05). Decreased respiratory function, antioxidants, and staining of the epithelial marker Zonula occludens-1 were also observed (p < 0.05). MV-augmented bleomycin-induced pulmonary fibrogenesis and epithelial apoptosis were attenuated in PI3K-γ-deficient mice, and we found pharmacological inhibition of PI3K-γ activity through AS605240 (p < 0.05). Our data suggest that MV augmented EMT after bleomycin-induced ALI, partially through the PI3K-γ pathway. Therapy targeting PI3K-γ may ameliorate MV-associated EMT.

Funder

Chang Gung Medical Research Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3