Potential Role of Fenestrated Septa in Axonal Transport of Golgi Cisternae and Gap Junction Formation/Function

Author:

Peracchia Camillo1ORCID

Affiliation:

1. Department of Pharmacology and Physiology, School of Medicine and Dentistry, University Rochester, Rochester, NY 14642-8711, USA

Abstract

Crayfish axons contain a system of parallel membranous cisternae spaced by ~2 μm and oriented perpendicularly to the axon’s long axis. Each cisterna is composed of two roughly parallel membranes, separated by a 150–400 Å wide space. The cisternae are interrupted by 500–600 Å pores, each occupied by a microtubule. Significantly, filaments, likely made of kinesin, often bridge the gap between the microtubule and the edge of the pore. Neighboring cisternae are linked by longitudinal membranous tubules. In small axons, the cisternae seem to be continuous across the axon, while in large axons they are intact only at the axon’s periphery. Due to the presence of pores, we have named these structures “Fenestrated Septa” (FS). Similar structures are also present in vertebrates, including mammals, proving that they are widely expressed in the animal kingdom. We propose that FS are components of the “anterograde transport” mechanism that moves cisternae of the Golgi apparatus (GA) toward the nerve ending by means of motor proteins, likely to be kinesins. In crayfish lateral giant axons, we believe that vesicles that bud off FS at the nerve ending contain gap junction hemichannels (innexons) for gap junction channel and hemichannel formation and function.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference43 articles.

1. Ochs, S. (1982). Axoplasmic Transport and Its Relation to Other Nerve Functions, John Whiley and Sons.

2. Axonal transport: Cargo-specific mechanisms of motility and regulation;Maday;Neuron,2014

3. Axonal transport of membranous and nonmembranous cargoes: A unified perspective;Brown;J. Cell Biol.,2003

4. Mechanisms of fast and slow axonal transport;Vallee;Annu. Rev. Neurosci.,1991

5. Walking the walk: How kinesin and dynein coordinate their steps;Gennerich;Curr. Opin. Cell Biol,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3