Utilization of Supervised Machine Learning to Understand Kinase Inhibitor Toxophore Profiles

Author:

Bieberich Andrew A.1,Asquith Christopher R. M.234ORCID

Affiliation:

1. AsedaSciences Inc., 1281 Win Hentschel Boulevard, West Lafayette, IN 47906, USA

2. School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland

3. Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA

4. Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA

Abstract

There have been more than 70 FDA-approved drugs to target the ATP binding site of kinases, mainly in the field of oncology. These compounds are usually developed to target specific kinases, but in practice, most of these drugs are multi-kinase inhibitors that leverage the conserved nature of the ATP pocket across multiple kinases to increase their clinical efficacy. To utilize kinase inhibitors in targeted therapy and outside of oncology, a narrower kinome profile and an understanding of the toxicity profile is imperative. This is essential when considering treating chronic diseases with kinase targets, including neurodegeneration and inflammation. This will require the exploration of inhibitor chemical space and an in-depth understanding of off-target interactions. We have developed an early pipeline toxicity screening platform that uses supervised machine learning (ML) to classify test compounds’ cell stress phenotypes relative to a training set of on-market and withdrawn drugs. Here, we apply it to better understand the toxophores of some literature kinase inhibitor scaffolds, looking specifically at a series of 4-anilinoquinoline and 4-anilinoquinazoline model libraries.

Funder

AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada, Innovative Medicines Initiative

Janssen, Merck KGaA Darmstadt Germany, MSD, Novartis Pharma AG, Ontario Ministry of Economic Development and Innovation, Pfizer, São Paulo Research Foundation-FAPESP, Takeda and Wellcome

NIH Common Fund Illuminating the Druggable Genome (IDG) program

National Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3