SCL14 Inhibits the Functions of the NAC043–MYB61 Signaling Cascade to Reduce the Lignin Content in Autotetraploid Populus hopeiensis

Author:

Wu Jian123ORCID,Kong Bo123,Zhou Qing123,Sun Qian4,Sang Yaru123,Zhao Yifan123,Yuan Tongqi4,Zhang Pingdong123ORCID

Affiliation:

1. National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China

2. Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China

3. College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China

4. Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China

Abstract

Whole-genome duplication often results in a reduction in the lignin content in autopolyploid plants compared with their diploid counterparts. However, the regulatory mechanism underlying variation in the lignin content in autopolyploid plants remains unclear. Here, we characterize the molecular regulatory mechanism underlying variation in the lignin content after the doubling of homologous chromosomes in Populus hopeiensis. The results showed that the lignin content of autotetraploid stems was significantly lower than that of its isogenic diploid progenitor throughout development. Thirty-six differentially expressed genes involved in lignin biosynthesis were identified and characterized by RNA sequencing analysis. The expression of lignin monomer synthase genes, such as PAL, COMT, HCT, and POD, was significantly down-regulated in tetraploids compared with diploids. Moreover, 32 transcription factors, including MYB61, NAC043, and SCL14, were found to be involved in the regulatory network of lignin biosynthesis through weighted gene co-expression network analysis. We inferred that SCL14, a key repressor encoding the DELLA protein GAI in the gibberellin (GA) signaling pathway, might inhibit the NAC043–MYB61 signaling functions cascade in lignin biosynthesis, which results in a reduction in the lignin content. Our findings reveal a conserved mechanism in which GA regulates lignin synthesis after whole-genome duplication; these results have implications for manipulating lignin production.

Funder

National Key R&D Program of China during the 14th Five-year Plan Period

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3