Affiliation:
1. Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary
Abstract
Polymers based on renewable monomers are projected to have a significant role in the sustainable economy, even in the near future. Undoubtedly, the cationically polymerizable β-pinene, available in considerable quantities, is one of the most promising bio-based monomers for such purposes. In the course of our systematic investigations related to the catalytic activity of TiCl4 on the cationic polymerization of this natural olefin, it was found that the 2-chloro-2,4,4-trimethylpentane (TMPCl)/TiCl4/N,N,N′,N′-tetramethylethylenediamine (TMEDA) initiating system induced efficient polymerization in dichloromethane (DCM)/hexane (Hx) mixture at both −78 °C and room temperature. At −78 °C, 100% monomer conversion was observed within 40 min, resulting in poly(β-pinene) with relatively high Mn (5500 g/mol). The molecular weight distributions (MWD) were uniformly shifted towards higher molecular weights (MW) in these polymerizations as long as monomer was present in the reaction mixture. However, chain–chain coupling took place after reaching 100% conversion, i.e., under monomer-starved conditions, resulting in considerable molecular weight increase and MWD broadening at −78 °C. At room temperature, the polymerization rate was lower, but chain coupling did not occur. The addition of a second feed of monomer in the polymerization system led to increasing conversion and polymers with higher MWs at both temperatures. 1H NMR spectra of the formed polymers indicated high in-chain double-bond contents. To overcome the polarity decrease by raising the temperature, polymerizations were also carried out in pure DCM at room temperature and at −20 °C. In both cases, rapid polymerization occurred with nearly quantitative yields, leading to poly(β-pinene)s with Mns in the range of 2000 g/mol. Strikingly, polymerization by TiCl4 alone, i.e., without any additive, also occurred with near complete conversion at room temperature within a few minutes, attributed to initiation by adventitious protic impurities. These results convincingly prove that highly efficient carbocationic polymerization of the renewable β-pinene can be accomplished with TiCl4 as catalyst under both cryogenic conditions, applied widely for carbocationic polymerizations, and the environmentally benign, energy-saving room temperature, i.e., without any additive and cooling or heating. These findings enable TiCl4-catalyzed eco-friendly manufacturing of poly(β-pinene)s, which can be utilized in various applications, and in addition, subsequent derivatizations could result in a range of high-added-value products.
Funder
National Research, Development and Innovation Office, Hungary
State of Hungary, co-financed by the European Regional Development Fund
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Reference97 articles.
1. IEA (2019). Oil 2019: Analysis and Forecasts to 2024, IEA.
2. Biomass in a petrochemical world;Roddy;Interface Focus,2013
3. Bio-based polymers with performance-advantaged properties;Cywar;Nat. Rev. Mater.,2022
4. Sustainable polymers from renewable resources;Zhu;Nature,2016
5. Maraveas, C., Bayer, I.S., and Bartzanas, T. (2021). Recent advances in antioxidant polymers: From sustainable and natural monomers to synthesis and applications. Polymers, 13.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献