Development of Highly Sensitive Digital Droplet PCR for Detection of cKIT Mutations in Circulating Free DNA That Mediate Resistance to TKI Treatment for Gastrointestinal Stromal Tumor (GIST)

Author:

Rassner Michael1ORCID,Waldeck Silvia12,Follo Marie1ORCID,Jilg Stefanie34,Philipp Ulrike1,Jolic Martina15,Wehrle Julius1,Jost Philipp J.36,Peschel Christian3,Illert Anna Lena12,Duyster Justus12ORCID,Scherer Florian12,von Bubnoff Nikolas127ORCID

Affiliation:

1. Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany

2. German Cancer Consortium (DKTK) Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany

3. III Medical Department for Hematology and Oncology, Klinikum Rechts der Isar, Technische Universität München, 80333 Munich, Germany

4. Onkologie Erding, 85435 Erding, Germany

5. Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden

6. Department of Clinical Oncology, Division of Internal Medicine, Medical University of Graz, 8036 Graz, Austria

7. Department of Hematology and Oncology, Medical Center, University of Schleswig Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

Abstract

Background: Mutations in cKIT or PDGFRA are found in up to 90% of patients with gastrointestinal stromal tumors (GISTs). Previously, we described the design, validation, and clinical performance of a digital droplet (dd)PCR assay panel for the detection of imatinib-sensitive cKIT and PDFGRA mutations in circulating tumor (ct)DNA. In this study, we developed and validated a set of ddPCR assays for the detection of cKIT mutations mediating resistance to cKIT kinase inhibitors in ctDNA. In addition, we cross-validated these assays using next generation sequencing (NGS). Methods: We designed and validated five new ddPCR assays to cover the most frequent cKIT mutations mediating imatinib resistance in GISTs. For the most abundant imatinib-resistance-mediating mutations in exon 17, a drop-off, probe-based assay was designed. Dilution series (of decreasing mutant (MUT) allele frequency spiked into wildtype DNA) were conducted to determine the limit of detection (LoD). Empty controls, single wildtype controls, and samples from healthy individuals were tested to assess specificity and limit of blank (LoB). For clinical validation, we measured cKIT mutations in three patients and validated results using NGS. Results: Technical validation demonstrated good analytical sensitivity, with a LoD ranging between 0.006% and 0.16% and a LoB ranging from 2.5 to 6.7 MUT fragments/mL. When the ddPCR assays were applied to three patients, the abundance of ctDNA in serial plasma samples reflected the individual disease course, detected disease activity, and indicated resistance mutations before imaging indicated progression. Digital droplet PCR showed good correlation to NGS for individual mutations, with a higher sensitivity of detection. Conclusions: This set of ddPCR assays, together with our previous set of cKIT and PDGFRA mutations assays, allows for dynamic monitoring of cKIT and PDGFRA mutations during treatment. Together with NGS, the GIST ddPCR panel will complement imaging of GISTs for early response evaluation and early detection of relapse, and thus it might facilitate personalized decision-making.

Funder

Novartis

the German Research Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3