Comprehensive Genome-Wide Analyses of Poplar R2R3-MYB Transcription Factors and Tissue-Specific Expression Patterns under Drought Stress

Author:

Zhang Xueli1ORCID,Wang Haoran1ORCID,Chen Ying1,Huang Minren1,Zhu Sheng12ORCID

Affiliation:

1. Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

2. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China

Abstract

R2R3-type MYB transcription factors are implicated in drought stress, which is a primary factor limiting the growth and development of woody plants. The identification of R2R3-MYB genes in the Populus trichocarpa genome has been previously reported. Nevertheless, the diversity and complexity of the conserved domain of the MYB gene caused inconsistencies in these identification results. There is still a lack of drought-responsive expression patterns and functional studies of R2R3-MYB transcription factors in Populus species. In this study, we identified a total of 210 R2R3-MYB genes in the P. trichocarpa genome, of which 207 genes were unevenly distributed across all 19 chromosomes. These poplar R2R3-MYB genes were phylogenetically divided into 23 subgroups. Collinear analysis demonstrated that the poplar R2R3-MYB genes underwent rapid expansion and that whole-genome duplication events were a dominant factor in the process of rapid gene expansion. Subcellular localization assays indicated that poplar R2R3-MYB TFs mainly played a transcriptional regulatory role in the nucleus. Ten R2R3-MYB genes were cloned from P. deltoides × P. euramericana cv. Nanlin895, and their expression patterns were tissue-specific. A majority of the genes showed similar drought-responsive expression patterns in two out of three tissues. This study provides a valid cue for further functional characterization of drought-responsive R2R3-MYB genes in poplar and provides support for the development of new poplar genotypes with elevated drought tolerance.

Funder

Fourteen Five-Year National Science and Technology Support Program

Natural Science Foundation of Jiangsu Province

Qinglan Project of the Jiangsu Education Department

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3