A Global Survey of the Full-Length Transcriptome of Apis mellifera by Single-Molecule Long-Read Sequencing

Author:

Zheng Shuang-Yan12,Pan Lu-Xia34,Cheng Fu-Ping34,Jin Meng-Jie34,Wang Zi-Long34

Affiliation:

1. College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China

2. Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China

3. Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China

4. Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang 330045, China

Abstract

As important pollinators, honey bees play a crucial role in both maintaining the ecological balance and providing products for humans. Although several versions of the western honey bee genome have already been published, its transcriptome information still needs to be refined. In this study, PacBio single-molecule sequencing technology was used to sequence the full-length transcriptome of mixed samples from many developmental time points and tissues of A. mellifera queens, workers and drones. A total of 116,535 transcripts corresponding to 30,045 genes were obtained. Of these, 92,477 transcripts were annotated. Compared to the annotated genes and transcripts on the reference genome, 18,915 gene loci and 96,176 transcripts were newly identified. From these transcripts, 136,554 alternative splicing (AS) events, 23,376 alternative polyadenylation (APA) sites and 21,813 lncRNAs were detected. In addition, based on the full-length transcripts, we identified many differentially expressed transcripts (DETs) between queen, worker and drone. Our results provide a complete set of reference transcripts for A. mellifera that dramatically expand our understanding of the complexity and diversity of the honey bee transcriptome.

Funder

National Natural Science Foundation

Natural Science Foundation of Jiangxi province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3