The Mac Is Back: The Role of Macrophages in Human Healthy and Complicated Pregnancies

Author:

Krop Juliette1ORCID,Tian Xuezi12,van der Hoorn Marie-Louise2ORCID,Eikmans Michael1ORCID

Affiliation:

1. Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands

2. Department of Obstetrics and Gynaecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands

Abstract

Pregnancy is a fascinating immunological paradox: the semi-allogeneic fetus generally grows without any complications. In the placenta, fetal trophoblast cells come into contact with maternal immune cells. Inaccurate or inadequate adaptations of the maternal immune system could lead to problems with the functioning of the placenta. Macrophages are important for tissue homeostasis, cleanup, and the repair of damaged tissues. This is crucial for a rapidly developing organ such as the placenta. The consensus on macrophages at the maternal-fetal interface in pregnancy is that a major proportion have an anti-inflammatory, M2-like phenotype, that expresses scavenger receptors and is involved in tissue remodeling and the dampening of the immune reactions. Recent multidimensional analyses have contributed to a more detailed outlook on macrophages. The new view is that this lineage represents a highly diverse phenotype and is more prevalent than previously thought. Spatial-temporal in situ analyses during gestation have identified unique interactions of macrophages both with trophoblasts and with T cells at different trimesters of pregnancy. Here, we elaborate on the role of macrophages during early human pregnancy and at later gestation. Their possible effect is reviewed in the context of HLA incompatibility between mother and fetus, first in naturally conceived pregnancies, but foremost in pregnancies after oocyte donation. The potential functional consequences of macrophages for pregnancy-related immune reactions and the outcome in patients with recurrent pregnancy loss are also discussed.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3