Novel Insights into the Contribution of Cyclic Electron Flow to Cotton Bracts in Response to High Light

Author:

Li Xiafei1,Ma Weimin2ORCID,Zhang Wangfeng1ORCID,Zhang Yali1

Affiliation:

1. The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group/College of Agronomy, Shihezi University, Shihezi 832003, China

2. College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China

Abstract

Cyclic electron flow around photosystem I (CEF-PSI) is shown to be an important protective mechanism to photosynthesis in cotton leaves. However, it is still unclear how CEF-PSI is regulated in non-foliar green photosynthetic tissues such as bracts. In order to learn more about the regulatory function of photoprotection in bracts, we investigated the CEF-PSI attributes in Yunnan 1 cotton genotypes (Gossypium bar-badense L.) between leaves and bracts. Our findings demonstrated that cotton bracts possessed PROTON GRADIENT REGULATION5 (PGR5)-mediated and the choroplastic NAD(P)H dehydrogenase (NDH)-mediated CEF-PSI by the same mechanism as leaves, albeit at a lower rate than in leaves. The ATP synthase activity of bracts was also lower, while the proton gradient across thylakoid membrane (ΔpH), rate of synthesis of zeaxanthin, and heat dissipation were higher than those of the leaves. These results imply that cotton leaves under high light conditions primarily depend on CEF to activate ATP synthase and optimize ATP/NADPH. In contrast, bracts mainly protect photosynthesis by establishing a ΔpH through CEF to stimulate the heat dissipation process.

Funder

the National Natural Science Foundation of China

program for the Training Youth Innovative Talent in Shihezi University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3