The Chemokine Receptor CCR1 Mediates Microglia Stimulated Glioma Invasion

Author:

Zeren Nazende1ORCID,Afzal Zobia1ORCID,Morgan Sara1,Marshall Gregory1ORCID,Uppiliappan Maithrayee1ORCID,Merritt James1,Coniglio Salvatore J.12

Affiliation:

1. School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA

2. Department of Biological Sciences, Kean University, Union, NJ 07083, USA

Abstract

Glioblastoma multiforme (GBM) is the most aggressive form of adult brain tumor which is highly resistant to conventional treatment and therapy. Glioma cells are highly motile resulting in infiltrative tumors with poorly defined borders. Another hallmark of GBM is a high degree of tumor macrophage/microglia infiltration. The level of these tumor-associated macrophages/microglia (TAMs) correlates with higher malignancy and poorer prognosis. We previously demonstrated that inhibition of TAM infiltration into glioma tumors with the CSF-1R antagonist pexidartinib (PLX3397) can inhibit glioma cell invasion in-vitro and in-vivo. In this study, we demonstrate an important role for the chemokine receptor CCR1 in mediating microglia/TAM stimulated glioma invasion. Using two structurally distinct CCR1 antagonists, including a novel inhibitor “MG-1-5”, we were able to block microglial activated GL261 glioma cell invasion in a dose dependent manner. Interestingly, treatment of a murine microglia cell line with glioma conditioned media resulted in a strong induction of CCR1 gene and protein expression. This induction was attenuated by inhibition of CSF-1R. In addition, glioma conditioned media treatment of microglia resulted in a rapid upregulation of gene expression of several CCR1 ligands including CCL3, CCL5, CCL6 and CCL9. These data support the existence of tumor stimulated autocrine loop within TAMs which ultimately mediates tumor cell invasion.

Funder

Kean University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3