Modelling a Human Blood-Brain Barrier Co-Culture Using an Ultrathin Silicon Nitride Membrane-Based Microfluidic Device

Author:

Hudecz Diana1ORCID,McCloskey Molly C.2ORCID,Vergo Sandra3,Christensen Søren3ORCID,McGrath James L.2,Nielsen Morten S.1

Affiliation:

1. Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark

2. Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA

3. Biotherapeutic Discovery, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark

Abstract

Understanding the vesicular trafficking of receptors and receptor ligands in the brain capillary endothelium is essential for the development of the next generations of biologics targeting neurodegenerative diseases. Such complex biological questions are often approached by in vitro models in combination with various techniques. Here, we present the development of a stem cell-based human in vitro blood-brain barrier model composed of induced brain microvascular endothelial cells (iBMECs) on the modular µSiM (a microdevice featuring a silicon nitride membrane) platform. The µSiM was equipped with a 100 nm thick nanoporous silicon nitride membrane with glass-like imaging quality that allowed the use of high-resolution in situ imaging to study the intracellular trafficking. As a proof-of-concept experiment, we investigated the trafficking of two monoclonal antibodies (mAb): an anti-human transferrin receptor mAb (15G11) and an anti-basigin mAb (#52) using the µSiM-iBMEC-human astrocyte model. Our results demonstrated effective endothelial uptake of the selected antibodies; however, no significant transcytosis was observed when the barrier was tight. In contrast, when the iBMECs did not form a confluent barrier on the µSiM, the antibodies accumulated inside both the iBMECs and astrocytes, demonstrating that the cells have an active endocytic and subcellular sorting machinery and that the µSiM itself does not hinder antibody transport. In conclusion, our µSiM-iBMEC-human astrocyte model provides a tight barrier with endothelial-like cells, which can be used for high-resolution in situ imaging and for studying receptor-mediated transport and transcytosis in a physiological barrier.

Funder

H. Lundbeck A/S

Innovative Medicines Initiative 2 Joint Undertaking

European Union

NIH

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microfluidic models of the neurovascular unit: a translational view;Fluids and Barriers of the CNS;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3