Land System Simulation of Ruoergai Plateau by Integrating MaxEnt and Boltzmann Entropy into CLUMondo

Author:

Sun Ziyun1,Wang Yuqi1,Lin Juru1,Gao Peichao12ORCID

Affiliation:

1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China

2. Center for Geodata and Analysis, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

Abstract

In the context of global change, land cover change is significantly influenced by human activities. However, there is limited knowledge about the potential economic and ecological benefits that land cover change on the Ruoergai Plateau will bring by 2035, considering the existing development plans. In our study, the CLUMondo model was improved by integrating the MaxEnt model and Boltzmann entropy and used to predict the structure and intensity of land change in China’s Ruoergai Plateau. The results show that the model integrated with MaxEnt and Boltzmann entropy is the most accurate in four contrasting experiments that have a Kappa of 0.773. The predicted results show that with the increase in the demand for ecological benefits, the total area of the water area shows a clear increasing trend. With 0.25% GDP growth, the water area is about 178 km2. With 2.5% GEP growth, the water area is about 202 km2. The latter is 24 km2 more than the former, an increase of about 13.6%. With the increase in the demand for economic benefits, the total area of construction land shows a clear increasing trend. Grassland, forest, and cropland are partly converted into construction land, because of the higher economic benefits of construction land. At the same time, the density of construction land will increase. With 12.6% GDP growth, the high-density construction area is about 399 km2. With 126.1% GEP growth, the water area is about 761 km2. High-density construction land increased by 90.7% (about 362 km2). In the low elevation area near the mountains of Ruoergai County, a new concentration of construction land will appear. The simulation results are of great significance for guiding ecological protection and urban construction in Ruoergai.

Funder

National Natural Science Foundation of China

State Key Laboratory of Earth Surface Processes and Resource Ecology

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3