Walkability Perceptions and Gender Differences in Urban Fringe New Towns: A Case Study of Shanghai

Author:

Gong Wenjing1,Huang Xiaoran23ORCID,White Marcus3ORCID,Langenheim Nano4ORCID

Affiliation:

1. College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China

2. School of Architecture and Art, North China University of Technology, Beijing 100144, China

3. Centre for Design Innovation, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

4. Melbourne School of Design, University of Melbourne, Masson Rd., Parkville, VIC 3010, Australia

Abstract

Urban fringe areas, characterized by relatively larger community sizes and lower population densities compared to central areas, may lead to variations in walkability as well as gender differences, such as safety perception. While objective measurements have received considerable attention, further research is needed to comprehensively assess subjective perceptions of walking in the urban periphery. As a case study, we evaluated survey responses of community perceptions of “Imageability”, “Enclosure”, “Human scale”, “Complexity” and “Safety” of Shanghai’s five new towns, comparing these with responses from the central area in terms of gender difference, and analyzed influencing factors and prediction performance of machine learning (ML) models. We developed a TrueSkill-based rating system to dynamically collect audits of street view images (SVIs) from professional students and used the result to integrate with Geographic Information Systems (GIS), Computer Vision (CV), Clustering analysis, and ML algorithm for further investigation. Results show that most of the new towns’ communities are perceived as moderately walkable or higher, with the city center’s community exhibiting the best walkability perceptions in general. Male and female perceptions of the “Human scale” and the factors that affect it differ little, but there are significant disparities in the other four perceptions. The best-performing ML models were effective at variable explanations and generalizations, with Random Forest Regression (RFR) performing better on more perception predictions. Responses also suggest that certain street design factors, such as street openness, can positively influence walkability perceptions of women and could be prioritized in new town development and urban renewal for more inclusive and walkable cities.

Funder

National Natural Science Foundation of China

Beijing High-level Overseas Talents Support Funding

R&D Program of Beijing Municipal Education Commission

Australian Research Council Linkage Project

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3