Ecosystem Service Optimisation in the Central Plains Urban Agglomeration Based on Land Use Structure Adjustment

Author:

Liu Min1,Fan Jianpeng2,Li Yuanzheng1ORCID,Mao Qizheng1

Affiliation:

1. College of Resource and Environment, Henan University of Economics and Law, Zhengzhou 450046, China

2. School of Economics Management, Pingdingshan University, Pingdingshan 467000, China

Abstract

By using the methods of scenario analysis, model simulation, and the multi-objective spatial optimisation algorithm Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the Pareto optimal solutions for water supply, water purification (N retention), as well as carbon storage and sequestration service (carbon service) of the Central Plains Urban Agglomeration (CPUA) were sought by adjusting the land use structure. It showed that, to reach the Pareto optimal solution goal, (1) in Scenario 1 (S1), the water supply service needs to increase by 10.682 billion cubic metres, the water purification (N retention) service needs to decrease by 11,400 tons, and the carbon service need to decrease by 2.487 billion tons. In Scenario 2 (S2), the water supply service needs to increase by 8.243 billion cubic metres, the water purification (N retention) service needs to decrease by 11,000 tons, and the carbon service needs to decrease by 2.466 billion tons. In Scenario 3 (S3), the water supply service needs to increase by 4.089 billion cubic metres, the water purification (N retention) service needs to decrease by 10,800 tons, and the carbon service needs to decrease by 2.380 billion tons. (2) After land use optimisation and adjustment, the S3 ecological land structure is complete and consistent with the vision of ecological protection and urban development in the study area, which is the optimal scenario. (3) Optimising the ecosystem service supply pattern through land use structure adjustment could balance the overall ecosystem service supply pattern of the study area In regions wherein ecosystem supply is insufficient and there is a spatial mismatch between supply and demand for ecosystem services, this study can guide regional land planning and assist in the formulation of ecosystem service management policies.

Funder

National Natural Science Foundation of China

Key Science and Technology Project of Henan Province

Key Scientific Research Project of Colleges and Universities in Henan Province

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference55 articles.

1. A review of ecosystem services supply and demand;Ma;Acta Geogr. Sin.,2017

2. Reid, W.V., Mooney, H.A., Cropper, A., Capistrano, D., Carpenter, S.R., Chopra, K., Dasgupta, P., Dietz, T., Duraiappah, A.K., and Kasperson, R. (2023, June 20). Millennium Ecosystem Assessment Synthesis Report. Available online: http://pdf.wri.org/mea_synthesis_030105.pdf.

3. Ecosystem services across borders: A framework for transboundary conservation policy;Varady;Front. Ecol. Environ.,2010

4. Research progress and prospect for the relationships between ecosystem services supplies and demands;Shen;J. Nat. Resour.,2021

5. Ecosystem services: Multiple classification systems are needed;Costanza;Biol. Conserv.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3