Recommendations for Landslide Early Warning Systems in Informal Settlements Based on a Case Study in Medellín, Colombia

Author:

Gamperl Moritz1ORCID,Singer John2ORCID,Garcia-Londoño Carolina3ORCID,Seiler Lisa4,Castañeda Julián3,Cerón-Hernandez David3,Thuro Kurosch1ORCID

Affiliation:

1. Chair of Engineering Geology, Technical University of Munich, 80333 Munich, Germany

2. AlpGeorisk, 86609 Donauwörth, Germany

3. Geological Society of Colombia, Antioquia Chapter, 50016 Medellín, Colombia

4. Chair of Landscape Architecture and Design, Institute of Landscape Architecture, Leibniz University Hannover, 30167 Hannover, Germany

Abstract

Fatalities from landslides are rising worldwide, especially in cities in mountainous regions, which often expand into the steep slopes surrounding them. For residents, often those living in poor neighborhoods and informal settlements, integrated landslide early warning systems (LEWS) can be a viable solution, if they are affordable and easily replicable. We developed a LEWS in Medellín, Colombia, which can be applied in such semi-urban situations. All the components of the LEWS, from hazard and risk assessment, to the monitoring system and the reaction capacity, were developed with and supported by all local stakeholders, including local authorities, agencies, NGO’s, and especially the local community, in order to build trust. It was well integrated into the social structure of the neighborhood, while still delivering precise and dense deformation and trigger measurements. A prototype was built and installed in a neighborhood in Medellín in 2022, comprising a dense network of line and point measurements and gateways. The first data from the measurement system are now available and allow us to define initial thresholds, while more data are being collected to allow for automatic early warning in the future. All the newly developed knowledge, from sensor hardware and software to installation manuals, has been compiled on a wiki-page, to facilitate replication by people in other parts of the world. According to our experience of the installation, we give recommendations for the implementation of LEWSs in similar areas, which can hopefully stimulate a lively exchange between researchers and other stakeholders who want to use, modify, and replicate our system.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3