Agricultural Cultivation Structure in Arid Areas Based on Water–Carbon Nexus—Taking the Middle Reaches of the Heihe River as an Example

Author:

Li Boxuan1,Niu Meng2,Zhao Jing3,Zheng Xi3,Chen Ran3,Ling Xiao3,Li Jinxin3,Wang Yuxiao1

Affiliation:

1. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China

2. China Urban Construction Design and Research Institute, Beijing 100120, China

3. School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China

Abstract

China faces challenges of food security and sustainable agricultural production. However, current studies rarely address the spatial distribution patterns of water consumption and carbon emissions. We studied the irrigation water use efficiency and carbon emission differences of crops in arid areas and their spatial distribution using wheat and maize, two major food crops in the middle reaches of the Heihe River, as examples. Furthermore, we have optimized low-carbon cropping of crops under the multiple objectives of water conservation and economic development. The results show that: (1) The carbon emissions per unit of water consumption for maize are 0.03 × 10−6 t mm−1 and 0.49 × 10−6 t mm−1 for wheat. Irrigation water consumption per unit yield is 515.6 mm t−1 for maize and 426.7 mm t−1 for wheat. (2) The spatial distribution patterns of irrigation water consumption were opposites for maize and wheat. The former has lower irrigation water consumption in the planting area upstream of the Heihe River and higher in the lower reaches. In contrast, the pattern of wheat irrigation is the opposite. (3) After optimizing the cropping mix for both crops, the area planted with wheat should be reduced to 59% of the current size, while maize should be expanded to 104%. The results of the research hold immense importance in guiding the future grain crop planting patterns for water-saving agriculture and low-carbon agriculture development in arid zones worldwide, aligning with the United Nations’ Sustainable Development Goals.

Funder

National Natural Science Foundation of China

Key Laboratory of Ecology and Energy-saving Study of Dense Habitat (Tongji University), Min-istry of Education

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3