Integrating Landscape Pattern Metrics to Map Spatial Distribution of Farmland Soil Organic Carbon on Lower Liaohe Plain of Northeast China

Author:

Liu Xiaochen12,Bian Zhenxing12ORCID,Sun Zhentao1,Wang Chuqiao12ORCID,Sun Zhiquan12,Wang Shuang3,Wang Guoli4

Affiliation:

1. College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China

2. Key Laboratory of Cultivated Land System Protection, Department of Natural Resources of Liaoning Province, Shenyang 110866, China

3. Natural Resources Affairs Service Center, Tieling 112608, China

4. Shanshui Planning and Design Limited Liability Company, Shenyang 110032, China

Abstract

Accurate digital mapping of farmland soil organic carbon (SOC) contributes to sustainable agricultural development and climate change mitigation. Farmland landscape pattern has changed greatly under anthropogenic influence, which should be considered an environmental variable to characterize the impact of human activities on SOC. In this study, we verified the feasibility of integrating landscape patterns in SOC prediction on Lower Liaohe Plain. Specifically, ten variables (climate, topographic, and landscape pattern variables) were selected for prediction with Random Forest (RF) and Support Vector Machines (SVMs). The effectiveness of landscape metrics was verified by establishing different variable combinations: (1) natural variables, and (2) natural and landscape pattern variables. The results confirmed that landscape variables improved mapping accuracy compared with natural variables. R2 of RF and SVM increased by 20.63% and 20.75%, respectively. RF performed better than SVM with smaller prediction error. Ranking of importance of variables showed that temperature and precipitation were the most important variables. The Aggregation Index (AI) contributed more than elevation, becoming the most important landscape variable. The Mean Contiguity Index (CONTIG-MN) and Landscape Contagion Index (CONTAG) also contributed more than other topographic variables. We conclude that landscape patterns can improve mapping accuracy and support SOC sequestration by optimizing farmland landscape management policies.

Funder

Graduate Innovation Training Program of Shenyang Agricultural University

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3