Deep Learning-Based Non-Contact IPPG Signal Blood Pressure Measurement Research

Author:

Cheng Hanquan1,Xiong Jiping1,Chen Zehui1,Chen Jingwei1

Affiliation:

1. College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321000, China

Abstract

In this paper, a multi-stage deep learning blood pressure prediction model based on imaging photoplethysmography (IPPG) signals is proposed to achieve accurate and convenient monitoring of human blood pressure. A camera-based non-contact human IPPG signal acquisition system is designed. The system can perform experimental acquisition under ambient light, effectively reducing the cost of non-contact pulse wave signal acquisition while simplifying the operation process. The first open-source dataset IPPG-BP for IPPG signal and blood pressure data is constructed by this system, and a multi-stage blood pressure estimation model combining a convolutional neural network and bidirectional gated recurrent neural network is designed. The results of the model conform to both BHS and AAMI international standards. Compared with other blood pressure estimation methods, the multi-stage model automatically extracts features through a deep learning network and combines different morphological features of diastolic and systolic waveforms, which reduces the workload while improving accuracy.

Funder

Jinhua Public Welfare Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3