Divergent Metabolomic Signatures of TGFβ2 and TNFα in the Induction of Retinal Epithelial-Mesenchymal Transition

Author:

Ng Pei Qin12345ORCID,Saint-Geniez Magali23,Kim Leo A.23,Shu Daisy Y.23ORCID

Affiliation:

1. Department of Plant Science, University of Cambridge, Downing Street, Cambridge CB2 3EA, Cambridgeshire, UK

2. Schepens Eye Research Institute of Mass Eye and Ear, Boston, MA 02114, USA

3. Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA

4. School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia

5. South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia

Abstract

Epithelial-mesenchymal transition (EMT) is a dedifferentiation program in which polarized, differentiated epithelial cells lose their cell-cell adhesions and transform into matrix-producing mesenchymal cells. EMT of retinal pigment epithelial (RPE) cells plays a crucial role in many retinal diseases, including age-related macular degeneration, proliferative vitreoretinopathy, and diabetic retinopathy. This dynamic process requires complex metabolic reprogramming to accommodate the demands of this dramatic cellular transformation. Both transforming growth factor-beta 2 (TGFβ2) and tumor necrosis factor-alpha (TNFα) have the capacity to induce EMT in RPE cells; however, little is known about their impact on the RPE metabolome. Untargeted metabolomics using high-resolution mass spectrometry was performed to reveal the metabolomic signatures of cellular and secreted metabolites of primary human fetal RPE cells treated with either TGFβ2 or TNFα for 5 days. A total of 638 metabolites were detected in both samples; 188 were annotated as primary metabolites. Metabolomics profiling showed distinct metabolomic signatures associated with TGFβ2 and TNFα treatment. Enrichment pathway network analysis revealed alterations in the pentose phosphate pathway, galactose metabolism, nucleotide and pyrimidine metabolism, purine metabolism, and arginine and proline metabolism in TNFα-treated cells compared to untreated control cells, whereas TGFβ2 treatment induced perturbations in fatty acid biosynthesis metabolism, the linoleic acid pathway, and the Notch signaling pathway. These results provide a broad metabolic understanding of the bioenergetic rewiring processes governing TGFβ2- and TNFα-dependent induction of EMT. Elucidating the contributions of TGFβ2 and TNFα and their mechanistic differences in promoting EMT of RPE will enable the identification of novel biomarkers for diagnosis, management, and tailored drug development for retinal fibrotic diseases.

Funder

the Fight for Sight Leonard & Robert Weintraub Postdoctoral Fellowship

BrightFocus Foundation Postdoctoral Fellowship Program in Macular Degeneration Research

Department of Defense, Spinal Vision Research Program

National Eye Institute of the National Institutes of Health

Iraty Award

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3