Dam Body Condition Score Alters Offspring Circulating Cortisol and Energy Metabolites in Holstein Calves but Did Not Affect Neonatal Leptin Surge

Author:

Brown William E.12,Holdorf Henry T.1,Kendall Sophia J.1ORCID,White Heather M.1ORCID

Affiliation:

1. Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA

2. Department of Animal Sciences & Industry, Kansas State University, Manhattan, KS 66506, USA

Abstract

The neonatal leptin surge is important for hypothalamic development, feed intake regulation, and long-term metabolic control. In sheep, the leptin surge is eliminated with maternal overnutrition and an elevated dam body condition score (BCS), but this has not been assessed in dairy cattle. The aim of this study was to characterize the neonatal profile of leptin, cortisol and other key metabolites in calves born to Holstein cows with a range of BCS. Dam BCS was determined 21 d before expected parturition. Blood was collected from calves within 4 h of birth (d 0), and on days 1, 3, 5, and 7. Serum was analyzed for concentrations of leptin, cortisol, blood urea nitrogen, β-hydroxybutyrate (BHB), free fatty acids (FFA), triglycerides, and total protein (TP). Statistical analysis was performed separately for calves sired by Holstein (HOL) or Angus (HOL-ANG) bulls. Leptin tended to decrease after birth in HOL calves, but there was no evidence of an association between leptin and BCS. For HOL calves, the cortisol level increased with an increasing dam BCS on day 0 only. Dam BCS was variably associated with the calf BHB and TP levels, depending on the sire breed and day of age. Further investigation is required to elucidate the impacts of maternal dietary and energy status during gestation on offspring metabolism and performance, in addition to the potential impact of the absence of a leptin surge on long-term feed intake regulation in dairy cattle.

Funder

Dairy Innovation Hub

Balchem Corporation

Purina Animal Nutrition LLC

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3