Right Ventricular Subclinical Dysfunction in SLE Patients Correlates with Metabolomic Fingerprint and Organ Damage

Author:

Deidda Martino1ORCID,Noto Antonio2,Firinu Davide1ORCID,Piras Cristina2ORCID,Cordeddu William1,Depau Claudia1,Costanzo Giulia1ORCID,Del Giacco Stefano1,Atzori Luigi2ORCID,Mercuro Giuseppe1,Cadeddu Dessalvi Christian1ORCID

Affiliation:

1. Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy

2. Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy

Abstract

Systemic lupus erythematosus (SLE) is a chronic inflammatory disease, and several studies have suggested possible early RV involvement. Aim of the study was to evaluate the 3D echo parameters of the right ventricle (RV) and the metabolomic profile to correlate both with SLE severity. Forty SLE patients, free of cardiovascular disease, were enrolled and the following 3D parameters were evaluated: the RV ejection fraction (RV-EF), longitudinal strain of the interventricular septum (Septal LS), longitudinal strain of the free wall (Free-LS) and the fractional area change (FAC). In addition, a metabolomic analysis was performed. Direct correlations were observed between TAPSE values and the RV 3D parameters. Then, when splitting the population according to the SDI value, it was found that patients with higher cumulative damage (≥3) had significantly lower FAC, RV-EF, Septal LS, and Free-LS values; the latter three parameters showed a significant correlation with the metabolic profile of the patients. Furthermore, the division based on SDI values identified different metabolic profiles related to the degree of RV dysfunction. The RV dysfunction induced by the chronic inflammatory state present in SLE can be identified early by 3D echocardiography. Its severity seems to be related to systemic organ damage and the results associated with a specific metabolic fingerprint constituted by 2,4-dihydroxybutyric acid, 3,4-dihydroxybutyric acid, citric acid, glucose, glutamine, glycine, linoleic acid, oleic acid, phosphate, urea, and valine.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3