Comparative Analysis of Volatile and Non-Volatile Metabolites Derived from Bacillus subtilis Strains Producing Different Levels of Biogenic Amines

Author:

Lee Kyuwon1,Kwon Seo-Hee1,Song Sumin1,Lee Do-Yup2ORCID,Park Min Kyung3,Kim Young-Suk1ORCID

Affiliation:

1. Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea

2. Department of Food and Animal Biotechnology, Seoul National University, Seoul 03760, Republic of Korea

3. Food Processing Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea

Abstract

Biogenic amines (BAs), which are mainly generated by the microbial decarboxylation of amino acids, are important nitrogen compounds in fermented foods because of their toxicology. However, amino acids, the precursors of BAs, also play an important role in generating volatile and non-volatile metabolites, which are strongly associated with quality indicators for foods. Bacillus subtilis is one of dominant fermentative microorganism in various fermented foods and is well known as a BA-producing bacterium. In this study, B. subtilis strains which have different BAs-producing capacities, higher level of BAs production strain (BH) and lower level of BAs production strain (BL), were applied to compare the formations of volatile and non-volatile metabolite profiles according to cultivation times. In this study, histamine, putrescine, and spermidine were detected in all strains, however, 2-phenylethylamine was detected only in BH. Partial least squares discriminant analysis (PLS-DA) was applied to investigate the difference of metabolic profiles according to strains. In BH, some amino acids (phenylalanine, leucine, and threonine) and related volatile metabolites (3-methylbutanoic acid, pyrazines, styrene, and 1H-indole) were produced higher levels. On the other hand, BL produced significantly higher contents of metabolites associated with metabolism of fatty acids and nucleotides. It is necessary to consider the formation of metabolites in terms of quality as well as that of BAs during fermentation.

Funder

National Research Foundation of Korea

project BK21 FOUR

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3