Exploring Volatile Organic Compounds in Rhizomes and Leaves of Kaempferia parviflora Wall. Ex Baker Using HS-SPME and GC–TOF/MS Combined with Multivariate Analysis

Author:

Thawtar May San1,Kusano Miyako2ORCID,Yingtao Li1,Wunna 3,Thein Min San4,Tanaka Keisuke56ORCID,Rivera Marlon17,Shi Miao1,Watanabe Kazuo N.2ORCID

Affiliation:

1. Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan

2. Tsukuba-Plant Innovation Research Center, Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan

3. Postharvest Research Institute, Ministry of Agriculture, Livestock, and Irrigation, Yezin, Myanmar

4. Department of Agricultural Research, Ministry of Agriculture, Livestock, and Irrigation, Yezin, Myanmar

5. NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya 156-8502, Japan

6. Faculty of Informatics, Tokyo University of Information Sciences, Chiba 65-8501, Japan

7. Institute of Biological Sciences, University of the Philippines Los Baños, Laguna, Philippines

Abstract

Volatile organic compounds (VOCs) play an important role in the biological activities of the medicinal Zingiberaceae species. In commercial preparations of VOCs from Kaempferia parviflora rhizomes, its leaves are wasted as by-products. The foliage could be an alternative source to rhizome, but its VOCs composition has not been explored previously. In this study, the VOCs in the leaves and rhizomes of K. parviflora plants grown in a growth room and in the field were analyzed using the headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography and time-of-flight mass spectrometry (GC-TOF-MS). The results showed a total of 75 and 78 VOCs identified from the leaves and rhizomes, respectively, of plants grown in the growth room. In the field samples, 96 VOCs were detected from the leaves and 98 from the rhizomes. These numbers are higher compared to the previous reports, which can be attributed to the analytical techniques used. It was also observed that monoterpenes were dominant in leaves, whereas sesquiterpenes were more abundant in rhizomes. Principal component analysis (PCA) revealed significantly higher abundance and diversity of VOCs in plants grown in the field than in the growth room. A high level of similarity of identified VOCs between the two tissues was also observed, as they shared 68 and 94 VOCs in the growth room and field samples, respectively. The difference lies in the relative abundance of VOCs, as most of them are abundant in rhizomes. Overall, the current study showed that the leaves of K. parviflora, grown in any growth conditions, can be further utilized as an alternative source of VOCs for rhizomes.

Funder

Yamazaki Spice Promotion Foundation and Japan Society for the Promotion of Science (JSPS) Grant-in-Aid

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3