Food Monitoring: Limitations of Accelerated Storage to Predict Molecular Changes in Hazelnuts (Corylus avellana L.) under Realistic Conditions Using UPLC-ESI-IM-QTOF-MS

Author:

Loesel Henri1ORCID,Shakiba Navid12,Wenck Soeren1,Le Tan Phat1,Karstens Tim-Oliver1,Creydt Marina1ORCID,Seifert Stephan1ORCID,Hackl Thomas12,Fischer Markus1

Affiliation:

1. Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany

2. Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany

Abstract

Accelerated storage is routinely used with pharmaceuticals to predict stability and degradation patterns over time. The aim of this is to assess the shelf life and quality under harsher conditions, providing crucial insights into their long-term stability and potential storage issues. This study explores the potential of transferring this approach to food matrices for shelf-life estimation. Therefore, hazelnuts were stored under accelerated short-term and realistic long-term conditions. Subsequently, they were analyzed with high resolution mass spectrometry, focusing on the lipid profile. LC-MS analysis has shown that many unique processes take place under accelerated conditions that do not occur or occur much more slowly under realistic conditions. This mainly involved the degradation of membrane lipids such as phospholipids, ceramides, and digalactosyldiacylglycerides, while oxidation processes occurred at different rates in both conditions. It can be concluded that a food matrix is far too complex and heterogeneous compared to pharmaceuticals, so that many more processes take place during accelerated storage, which is why the results cannot be used to predict molecular changes in hazelnuts stored under realistic conditions.

Funder

AiF

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3