Metabolic Reprogramming of Castration-Resistant Prostate Cancer Cells as a Response to Chemotherapy

Author:

Petrella GretaORCID,Corsi FrancescaORCID,Ciufolini Giorgia,Germini Sveva,Capradossi Francesco,Pelliccia Andrea,Torino FrancescoORCID,Ghibelli Lina,Cicero Daniel OscarORCID

Abstract

Prostate cancer at the castration-resistant stage (CRPC) is a leading cause of death among men due to resistance to anticancer treatments, including chemotherapy. We set up an in vitro model of therapy-induced cancer repopulation and acquired cell resistance (CRAC) on etoposide-treated CRPC PC3 cells, witnessing therapy-induced epithelial-to-mesenchymal-transition (EMT) and chemoresistance among repopulating cells. Here, we explore the metabolic changes leading to chemo-induced CRAC, measuring the exchange rates cell/culture medium of 36 metabolites via Nuclear Magnetic Resonance spectroscopy. We studied the evolution of PC3 metabolism throughout recovery from etoposide, encompassing the degenerative, quiescent, and repopulating phases. We found that glycolysis is immediately shut off by etoposide, gradually recovering together with induction of EMT and repopulation. Instead, OXPHOS, already high in untreated PC3, is boosted by etoposide to decline afterward, though stably maintaining values higher than control. Notably, high levels of EMT, crucial in the acquisition of chemoresistance, coincide with a strong acceleration of metabolism, especially in the exchange of principal nutrients and their end products. These results provide novel information on the energy metabolism of cancer cells repopulating from cytotoxic drug treatment, paving the way for uncovering metabolic vulnerabilities to be possibly pharmacologically targeted and providing novel clinical options for CRPC.

Funder

Regione Lazio

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3