The Effect of Organic and Conventional Cultivation Systems on the Profile of Volatile Organic Compounds in Winter Wheat Grain, Including Susceptibility to Fusarium Head Blight

Author:

Buśko Maciej1ORCID,Gracka Anna2,Jeleń Henryk2ORCID,Szablewska Kinga Stuper1ORCID,Przybylska-Balcerek Anna1ORCID,Szwajkowska-Michałek Lidia1,Góral Tomasz3ORCID

Affiliation:

1. Department of Chemistry, Poznań University of Life Sciences, 60-625 Poznań, Poland

2. Food Volatilomics and Sensomics Group, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-624 Poznań, Poland

3. Plant Breeding and Acclimatization Institute-National Research Institute, 05-870 Radzików, Poland

Abstract

The grain of 30 winter wheat cultivars differing in terms of their resistance to FHB (Fusarium head blight) was tested. The cultivars were grown in four variants of field trials established in a split-plot design: control without fungicides, chemical control of FHB with fungicides after Fusarium inoculation, Fusarium head inoculation, and organic cultivation. The profile of volatile compounds in grain samples was determined by mean headspace–solid phase microextraction and analyzed by gas chromatography time-of-flight mass spectroscopy. The identified volatile profile comprised 146 compounds belonging to 14 chemical groups. The lowest abundance of volatile organic compounds (VOCs) was found for the organic cultivation variant. The performed discriminant analysis facilitated the complete separation of grain for individual experimental variants based on the number of VOCs decreasing from 116 through 62, 37 down to 14. The grain from organic farming was characterized by a significantly different VOCs profile than the grain from the other variants of the experiment. The compounds 1-methylcycloheptanol, 2-heptanone, 2(3H)-furanone, and 5-hexyldihydro-2(3H)-furanone showed statistically significant differences between all four experimental variants.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3