Metabolic Changes and Their Associations with Selected Nutrients Intake in the Group of Workers Exposed to Arsenic

Author:

Sijko Monika,Janasik Beata,Wąsowicz Wojciech,Kozłowska Lucyna

Abstract

Arsenic (As) exposure causes numerous adverse health effects, which can be reduced by the nutrients involved in the metabolism of iAs (inorganic As). This study was carried out on two groups of copper-smelting workers: WN, workers with a urinary total arsenic (tAs) concentration within the norm (n = 75), and WH, workers with a urinary tAs concentration above the norm (n = 41). This study aimed to analyze the association between the intake level of the nutrients involved in iAs metabolism and the signal intensity of the metabolites that were affected by iAs exposure. An untargeted metabolomics analysis was carried out on urine samples using liquid chromatography–mass spectrometry, and the intake of the nutrients was analyzed based on 3-day dietary records. Compared with the WN group, five pathways (the metabolism of amino acids, carbohydrates, glycans, vitamins, and nucleotides) with twenty-five putatively annotated metabolites were found to be increased in the WH group. In the WN group, the intake of nutrients (methionine; vitamins B2, B6, and B12; folate; and zinc) was negatively associated with six metabolites (cytosine, D-glucuronic acid, N-acetyl-D-glucosamine, pyroglutamic acid, uridine, and urocanic acid), whereas in the WH group, it was associated with five metabolites (D-glucuronic acid, L-glutamic acid, N-acetyl-D-glucosamine, N-acetylneuraminic acid, and uridine). Furthermore, in the WH group, positive associations between methionine, folate, and zinc intake and the signal intensity of succinic acid and 3-mercaptolactic acid were observed. These results highlight the need to educate the participants about the intake level of the nutrients involved in iAs metabolism and may contribute to further considerations with respect to the formulation of dietary recommendations for people exposed to iAs.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3