Moderate Effects of Hypoxic Training at Low and Supramaximal Intensities on Skeletal Muscle Metabolic Gene Expression in Mice

Author:

Drozdovska Svitlana12,Zanou Nadège13ORCID,Lavier Jessica14,Mazzolai Lucia4,Millet Grégoire P.1ORCID,Pellegrin Maxime14ORCID

Affiliation:

1. Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland

2. Biomedical Disciplines Department, Health, Physical Education and Tourism Faculty, National University of Ukraine on Physical Education and Sport, 03150 Kyiv, Ukraine

3. Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland

4. Angiology Division, Heart and Vessel Department, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland

Abstract

The muscle molecular adaptations to different exercise intensities in combination with hypoxia are not well understood. This study investigated the effect of low- and supramaximal-intensity hypoxic training on muscle metabolic gene expression in mice. C57BL/6 mice were divided into two groups: sedentary and training. Training consisted of 4 weeks at low or supramaximal intensity, either in normoxia or hypoxia (FiO2 = 0.13). The expression levels of genes involved in the hypoxia signaling pathway (Hif1a and Vegfa), the metabolism of glucose (Gys1, Glut4, Hk2, Pfk, and Pkm1), lactate (Ldha, Mct1, Mct4, Pdh, and Pdk4) and lipid (Cd36, Fabp3, Ucp2, Hsl, and Mcad), and mitochondrial energy metabolism and biogenesis (mtNd1, mtNd6, CytC, CytB, Pgc1a, Pgc1β, Nrf1, Tfam, and Cs) were determined in the gastrocnemius muscle. No physical performance improvement was observed between groups. In normoxia, supramaximal intensity training caused upregulation of major genes involved in the transport of glucose and lactate, fatty acid oxidation, and mitochondrial biogenesis, while low intensity training had a minor effect. The exposure to hypoxia changed the expression of some genes in the sedentary mice but had a moderate effect in trained mice compared to respective normoxic mice. In hypoxic groups, low-intensity training increased the mRNA levels of Mcad and Cs, while supramaximal intensity training decreased the mRNA levels of Mct1 and Mct4. The results indicate that hypoxic training, regardless of exercise intensity, has a moderate effect on muscle metabolic gene expression in healthy mice.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3