Comparative Transcriptome Analysis Reveals the Underlying Response Mechanism to Salt Stress in Maize Seedling Roots

Author:

Zhang Chen1,Chen Bin2ORCID,Zhang Ping2,Han Qinghui1,Zhao Guangwu1,Zhao Fucheng2

Affiliation:

1. College of Advanced Agricultural Science, Zhejiang Agriculture and Forestry University, Lin’an 311300, China

2. Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China

Abstract

Crop growth and development can be impeded by salt stress, leading to a significant decline in crop yield and quality. This investigation performed a comparative analysis of the physiological responses of two maize inbred lines, namely L318 (CML115) and L323 (GEMS58), under salt-stress conditions. The results elucidated that CML115 exhibited higher salt tolerance compared with GEMS58. Transcriptome analysis of the root system revealed that DEGs shared by the two inbred lines were significantly enriched in the MAPK signaling pathway–plant and plant hormone signal transduction, which wield an instrumental role in orchestrating the maize response to salt-induced stress. Furthermore, the DEGs’ exclusivity to salt-tolerant genotypes was associated with sugar metabolism pathways, and these unique DEGs may account for the disparities in salt tolerance between the two genotypes. Meanwhile, we investigated the dynamic global transcriptome in the root systems of seedlings at five time points after salt treatment and compared transcriptome data from different genotypes to examine the similarities and differences in salt tolerance mechanisms of different germplasms.

Funder

Major Agriculture Science Foundation of Upland Grain Crops Breeding of Zhejiang Province

China Agriculture Research System of MOF and MARA

Zhejiang Province “Three Rural and Nine Party” Science and Technology Cooperation Plan Project

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3