Affiliation:
1. Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
2. Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
3. Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany
Abstract
Isovaleric aciduria (IVA) is a rare disorder of leucine metabolism and part of newborn screening (NBS) programs worldwide. However, NBS for IVA is hampered by, first, the increased birth prevalence due to the identification of individuals with an attenuated disease variant (so-called “mild” IVA) and, second, an increasing number of false positive screening results due to the use of pivmecillinam contained in the medication. Recently, machine learning (ML) methods have been analyzed, analogous to new biomarkers or second-tier methods, in the context of NBS. In this study, we investigated the application of machine learning classification methods to improve IVA classification using an NBS data set containing 2,106,090 newborns screened in Heidelberg, Germany. Therefore, we propose to combine two methods, linear discriminant analysis, and ridge logistic regression as an additional step, a digital-tier, to traditional NBS. Our results show that this reduces the false positive rate by 69.9% from 103 to 31 while maintaining 100% sensitivity in cross-validation. The ML methods were able to classify mild and classic IVA from normal newborns solely based on the NBS data and revealed that besides isovalerylcarnitine (C5), the metabolite concentration of tryptophan (Trp) is important for improved classification. Overall, applying ML methods to improve the specificity of IVA could have a major impact on newborns, as it could reduce the newborns’ and families’ burden of false positives or over-treatment.
Funder
Klaus Tschira Foundation
Dietmar Hopp Foundation, St. Leon Rot, Germany
Subject
Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism
Reference38 articles.
1. Current status of newborn screening worldwide: 2015;Therrell;Semin. Perinatol.,2015
2. Loeber, J., Platis, D., Zetterström, R., Almashanu, S., Boemer, F., Bonham, J.R., Borde, P., Brincat, I., Cheillan, D., and Dekkers, E. (2021). Neonatal Screening in Europe Revisited: An ISNS Perspective on the Current State and Developments Since 2010. Int. J. Neonatal Screen., 7.
3. (2022, July 31). Richtlinie des Gemeinsamen Bundesausschusses über die Früherkennung von Krankheiten bei Kindern. Available online: https://www.g-ba.de/downloads/62-492-2675/Kinder-RL_2021-09-16_iK-2022-01-01.pdf.
4. Newborn screening and disease variants predict neurological outcome in isovaleric aciduria;Henze;J. Inherit. Metab. Dis.,2021
5. A Common Mutation Is Associated with a Mild, Potentially Asymptomatic Phenotype in Patients with Isovaleric Acidemia Diagnosed by Newborn Screening;Ensenauer;Am. J. Hum. Genet.,2004
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献