Biochemical Activation and Regulatory Functions of Trans-Regulatory KLF14 and Its Association with Genetic Polymorphisms

Author:

Akash Muhammad Sajid Hamid1ORCID,Rasheed Sumbal1,Rehman Kanwal2ORCID,Ibrahim Muhammad3,Imran Muhammad45ORCID,Assiri Mohammed A.45

Affiliation:

1. Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan

2. Department of Pharmacy, The Women University, Multan 60000, Pakistan

3. Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan

4. Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62413, Saudi Arabia

5. Department of Chemistry, Faculty of Science, King Khalid University, Abha 62413, Saudi Arabia

Abstract

Krüpple-Like family of transcription factor-14 (KLF14) is a master trans-regulatory gene that has multiple biological regulatory functions and is involved in many pathological mechanisms. It controls the expressions of several other genes which are involved in multiple regulatory functions. KLF14 plays a significant role in lipid metabolism, glucose regulation and insulin sensitivity. Cell apoptosis, proliferation, and differentiation are regulated by the KLF14 gene, and up-regulation of KLF14 prevents cancer progression. KLF14 has been used as an epigenetic biomarker for the estimation of chronological age due to the presence of different age-related CpG sites on genes that become methylated with age. Different genome-wide association studies have identified several KLF14 variants in adipose tissues. These single nucleotide polymorphisms in KLF14 have been associated with dyslipidemia, insulin resistance, and glucose intolerance. Moreover, the prevalence of genetic polymorphism is different in different populations due to ethnic differences and epigenetic modifications. In addition, environmental and physiological factors such as diet, age, gender, and obesity are also responsible for genetic mutations in KLF14.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3