Biomarker Discovery for Hepatocellular Carcinoma in Patients with Liver Cirrhosis Using Untargeted Metabolomics and Lipidomics Studies

Author:

Rashid Md Mamunur1,Varghese Rency S.1ORCID,Ding Yuansong1,Ressom Habtom W.1ORCID

Affiliation:

1. Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA

Abstract

Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is the third leading cause of mortality globally. Patients with HCC have a poor prognosis due to the fact that the emergence of symptoms typically occurs at a late stage of the disease. In addition, conventional biomarkers perform suboptimally when identifying HCC in its early stages, heightening the need for the identification of new and more effective biomarkers. Using metabolomics and lipidomics approaches, this study aims to identify serum biomarkers for identification of HCC in patients with liver cirrhosis (LC). Serum samples from 20 HCC cases and 20 patients with LC were analyzed using ultra-high-performance liquid chromatography-Q Exactive mass spectrometry (UHPLC-Q-Exactive-MS). Metabolites and lipids that are significantly altered between HCC cases and patients with LC were identified. These include organic acids, amino acids, TCA cycle intermediates, fatty acids, bile acids, glycerophospholipids, sphingolipids, and glycerolipids. The most significant variability was observed in the concentrations of bile acids, fatty acids, and glycerophospholipids. In the context of HCC cases, there was a notable increase in the levels of phosphatidylethanolamine and triglycerides, but the levels of fatty acids and phosphatidylcholine exhibited a substantial decrease. In addition, it was observed that all of the identified metabolites exhibited a superior area under the receiver operating characteristic (ROC) curve in comparison to alpha-fetoprotein (AFP). The pathway analysis of these metabolites revealed fatty acid, lipid, and energy metabolism as the most impacted pathways. Putative biomarkers identified in this study will be validated in future studies via targeted quantification.

Funder

National Institute of Health

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3