Pilot Study on the Use of Untargeted Metabolomic Fingerprinting of Liquid-Cytology Fluids as a Diagnostic Tool of Malignancy for Thyroid Nodules

Author:

D’Andréa Grégoire12ORCID,Jing Lun2ORCID,Peyrottes Isabelle3,Guigonis Jean-Marie2,Graslin Fanny2,Lindenthal Sabine2,Sanglier Julie4,Gimenez Isabel3,Haudebourg Juliette3,Vandersteen Clair1ORCID,Bozec Alexandre12ORCID,Guevara Nicolas1ORCID,Pourcher Thierry2ORCID

Affiliation:

1. Otorhinolaryngology and Head and Neck Surgery Department, Institut Universitaire de la Face et du Cou, GCS Nice University Hospital—Antoine Lacassagne Center, Côte d’Azur University, 31 Avenue de Valombrose, 06103 Nice, France

2. Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), UMR E4320 TIRO-MATOs, Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Faculté de Médecine, Côte d’Azur University, 28 Avenue de Valombrose, CEDEX 2, 06107 Nice, France

3. Department of Cytopathology and Anatomopathology, Antoine Lacassagne Center, 33 Av. de Valombrose, 06189 Nice, France

4. Department of Radiology, Antoine Lacassagne Center, 33 Av. de Valombrose, 06189 Nice, France

Abstract

Although it is the gold standard for assessing the malignancy of thyroid nodules (TNs) preoperatively, the cytological analysis of fine-needle aspiration cytology (FNAC) samples results in 20–30% of cases in indeterminate lesions (ITNs). As two-thirds of these lesions will appear benign after diagnostic surgery, improved preoperative diagnostic methods need to be developed. In this pilot study, we evaluate if the metabolomic profiles of liquid-based (CytoRich®) FNAC samples of benign and malignant nodules can allow the molecular diagnosis of TNs. We performed untargeted metabolomic analyses with CytoRich® FNAC in a monocentric retrospective study. The cohort was composed of cytologically benign TNs, histologically benign or papillary thyroid carcinomas (PTCs) cytologically ITNs, and suspicious/malignant TNs histologically confirmed as PTCs. The diagnostic performance of the identified metabolomic signature was assessed using several supervised classification methods. Seventy-eight patients were enrolled in the study. We identified 7690 peaks, of which 2697 ions were included for further analysis. We selected a metabolomic signature composed of the top 15 metabolites. Among all the supervised classification methods, the supervised autoencoder deep neural network exhibited the best performance, with an accuracy of 0.957 (0.842–1), an AUC of 0.945 (0.833–1), and an F1 score of 0.947 (0.842–1). Here, we report a promising new ancillary molecular technique to differentiate PTCs from benign TNs (including among ITNs) based on the metabolomic signature of FNAC sample fluids. Further studies with larger cohorts are now needed to identify a larger number of biomarkers and obtain more robust signatures.

Funder

Recherche en Matières de Sûreté Nucléaire et Radioprotection program from the French National Research Agency and the Conseil Départemental 06

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3