Metabolomic Profiling of Aqueous Humor from Pathological Myopia Patients with Choroidal Neovascularization

Author:

Wei Qiaoling1234ORCID,Yu Zhiqiang123,Zhou Xianjin123,Gong Ruowen123,Jiang Rui1234,Xu Gezhi123,Liu Wei123

Affiliation:

1. Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China

2. Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China

3. NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China

4. Ocular Trauma Center, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China

Abstract

Choroidal neovascularization (CNV) is a severe complication observed in individuals with pathological myopia (PM). Our hypothesis is that specific metabolic alterations occur during the development of CNV in patients with PM. To investigate this, an untargeted metabolomics analysis was conducted using gas chromatography–mass spectrometry (GC–MS) and liquid chromatography–mass spectrometry (LC–MS) on aqueous humor (AH) samples obtained from meticulously matched PM patients, including those with CNV (n = 11) and without CNV (n = 11). The analysis aimed to identify differentially expressed metabolites between the two groups. Furthermore, the discriminative ability of each metabolite was evaluated using the area under the receiver operating characteristic curve (AUC). Enriched metabolic pathways were determined using the KEGG and MetaboAnalyst databases. Our results revealed the detection of 272 metabolites using GC–MS and 1457 metabolites using LC–MS in AH samples. Among them, 97 metabolites exhibited significant differential expression between the CNV and non-CNV groups. Noteworthy candidates, including D-citramalic acid, biphenyl, and isoleucylproline, demonstrated high AUC values ranging from 0.801 to 1, indicating their potential as disease biomarkers. Additionally, all three metabolites showed a strong association with retinal cystoid edema in CNV patients. Furthermore, the study identified 12 altered metabolic pathways, with five of them related to carbohydrate metabolism, suggesting their involvement in the occurrence of myopic CNV. These findings provide possible disease-specific biomarkers of CNV in PM and suggest the role of disturbed carbohydrate metabolism in its pathogenesis. Larger studies are needed to validate these findings.

Funder

National Natural Science Foundation of China

Foundation for the Shanghai Key Laboratory of Visual Impairment and Restoration

Key NHC Key Laboratory of Myopia

Laboratory of Myopia, Chinese Academy of Medical Sciences

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3