Comparison of Compound Identification Tools Using Data Dependent and Data Independent High-Resolution Mass Spectrometry Spectra

Author:

Nijssen Rosalie1ORCID,Blokland Marco H.1ORCID,Wegh Robin S.1,de Lange Erik1,van Leeuwen Stefan P. J.1ORCID,Berendsen Bjorn J. A.1,van de Schans Milou G. M.1

Affiliation:

1. Wageningen Food Safety Research, Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands

Abstract

Liquid chromatography combined with high-resolution mass spectrometry (LC-HRMS) is a frequently applied technique for suspect screening (SS) and non-target screening (NTS) in metabolomics and environmental toxicology. However, correctly identifying compounds based on SS or NTS approaches remains challenging, especially when using data-independent acquisition (DIA). This study assessed the performance of four HRMS-spectra identification tools to annotate in-house generated data-dependent acquisition (DDA) and DIA HRMS spectra of 32 pesticides, veterinary drugs, and their metabolites. The identification tools were challenged with a diversity of compounds, including isomeric compounds. The identification power was evaluated in solvent standards and spiked feed extract. In DDA spectra, the mass spectral library mzCloud provided the highest success rate, with 84% and 88% of the compounds correctly identified in the top three in solvent standard and spiked feed extract, respectively. The in silico tools MSfinder, CFM-ID, and Chemdistiller also performed well in DDA data, with identification success rates above 75% for both solvent standard and spiked feed extract. MSfinder provided the highest identification success rates using DIA spectra with 72% and 75% (solvent standard and spiked feed extract, respectively), and CFM-ID performed almost similarly in solvent standard and slightly less in spiked feed extract (72% and 63%). The identification success rates for Chemdistiller (66% and 38%) and mzCloud (66% and 31%) were lower, especially in spiked feed extract. The difference in success rates between DDA and DIA is most likely caused by the higher complexity of the DIA spectra, making direct spectral matching more complex. However, this study demonstrates that DIA spectra can be used for compound annotation in certain software tools, although the success rate is lower than for DDA spectra.

Funder

Dutch Ministry of Agriculture, Nature, and Food Quality

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3