A Metabolomics-Based Study on the Discriminative Classification Models and Toxicological Mechanism of Estazolam Fatal Intoxication

Author:

Dai Xiaohui12,Bai Rui12,Xie Bing12,Xiang Jiahong12,Miao Xingang123,Shi Yan4,Yu Feng12,Cong Bin12,Wen Di12,Ma Chunling12

Affiliation:

1. Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China

2. Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China

3. Forensic Science Centre of WATSON, Guangzhou 510440, China

4. Shanghai Key Laboratory Medicine, Department of Forensic Toxicology, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai 200063, China

Abstract

Fatal intoxication with sedative-hypnotic drugs is increasing yearly. However, the plasma drug concentration data for fatal intoxication involving these substances are not systematic and even overlap with the intoxication group. Therefore, developing a more precise and trustworthy approach to determining the cause of death is necessary. This study analyzed mice plasma and brainstem samples using the liquid chromatography-high resolution tandem mass spectrometry (LC-HR MS/MS)-based metabolomics method to create discriminative classification models for estazolam fatal intoxication (EFI). The most perturbed metabolic pathway between the EFI and EIND (estazolam intoxication non-death) was examined, Both EIND and EFI groups were administered 500 mg of estazolam per 100 g of body weight. Mice that did not die beyond 8 hours were treated with cervical dislocation and were classified into the EIND groups; the lysine degradation pathway was verified by qPCR (Quantitative Polymerase Chain Reaction), metabolite quantitative and TEM (transmission electron microscopy) analysis. Non-targeted metabolomics analysis with EFI were the experimental group and four hypoxia-related non-drug-related deaths (NDRDs) were the control group. Mass spectrometry data were analyzed with Compound Discoverer (CD) 3.1 software and multivariate statistical analyses were performed using the online software MetaboAnalyst 5.0. After a series of analyses, the results showed the discriminative classification model in plasma was composed of three endogenous metabolites: phenylacetylglycine, creatine and indole-3-lactic acid, and in the brainstem was composed of palmitic acid, creatine, and indole-3-lactic acid. The specificity validation results showed that both classification models distinguished between the other four sedatives–hypnotics, with an area under ROC curve (AUC) of 0.991, and the classification models had an extremely high specificity. When comparing different doses of estazolam, the AUC value of each group was larger than 0.80, and the sensitivity was also high. Moreover, the stability results showed that the AUC value was equal to or very close to 1 in plasma samples stored at 4 °C for 0, 1, 5, 10 and 15 days; the predictive power of the classification model was stable within 15 days. The results of lysine degradation pathway validation revealed that the EFI group had the highest lysine and saccharopine concentrations (mean (ng/mg) = 1.089 and 1.2526, respectively) when compared to the EIND and control group, while the relative expression of SDH (saccharopine dehydrogenase) showed significantly lower in the EFI group (mean = 1.206). Both of these results were statistically significant. Furthermore, TEM analysis showed that the EFI group had the more severely damaged mitochondria. This work gives fresh insights into the toxicological processes of estazolam and a new method for identifying EFI-related causes of mortality.

Funder

Central Government Guided Local Science and Technology Development Fund Project

Natural Science Foundation for Outstanding Youth of Hebei Province

National 13th Five-Year Key R&D Plan

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3