Affiliation:
1. College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
2. College of Pharmacy, Mansoura University, Mansoura 35516, Egypt
Abstract
Trillions of diverse microbes reside in the gut and are deeply interwoven with the human physiological process, from food digestion, immune system maturation, and fighting invading pathogens, to drug metabolism. Microbial drug metabolism has a profound impact on drug absorption, bioavailability, stability, efficacy, and toxicity. However, our knowledge of specific gut microbial strains, and their genes that encode enzymes involved in the metabolism, is limited. The microbiome encodes over 3 million unique genes contributing to a huge enzymatic capacity, vastly expanding the traditional drug metabolic reactions that occur in the liver, manipulating their pharmacological effect, and, ultimately, leading to variation in drug response. For example, the microbial deactivation of anticancer drugs such as gemcitabine can lead to resistance to chemotherapeutics or the crucial role of microbes in modulating the efficacy of the anticancer drug, cyclophosphamide. On the other hand, recent findings show that many drugs can shape the composition, function, and gene expression of the gut microbial community, making it harder to predict the outcome of drug-microbiota interactions. In this review, we discuss the recent understanding of the multidirectional interaction between the host, oral medications, and gut microbiota, using traditional and machine-learning approaches. We analyze gaps, challenges, and future promises of personalized medicine that consider gut microbes as a crucial player in drug metabolism. This consideration will enable the development of personalized therapeutic regimes with an improved outcome, ultimately leading to precision medicine.
Subject
Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献