Glutathione for Food and Health Applications with Emphasis on Extraction, Identification, and Quantification Methods: A Review

Author:

Al-Temimi Anfal Alwan1,Al-Mossawi Aum-El-Bashar1,Al-Hilifi Sawsan A.1ORCID,Korma Sameh A.23ORCID,Esatbeyoglu Tuba4ORCID,Rocha João Miguel5ORCID,Agarwal Vipul6ORCID

Affiliation:

1. Department of Food Science, College of Agriculture, University of Basrah, Basrah 61014, Iraq

2. Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt

3. School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China

4. Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany

5. Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal

6. Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

Glutathione is a naturally occurring compound that plays a crucial role in the cellular response to oxidative stress through its ability to quench free radicals, thus mitigating the risk of potential damage, including cell death. While glutathione is endogenously present in different plants and animal cells, their concentration varies considerably. The alteration in glutathione homeostasis can be used as a potential marker for human diseases. In the case of the depletion of endogenous glutathione, exogenous sources can be used to replenish the pool. To this end, both natural and synthetic glutathione can be used. However, the health benefit of glutathione from natural sources derived from fruits and vegetables is still debated. There is increasingly growing evidence of the potential health benefits of glutathione in different diseases; however, the determination and in situ quantification of endogenously produced glutathione remains a major challenge. For this reason, it has been difficult to understand the bioprocessing of exogenously delivered glutathione in vivo. The development of an in situ technique will also aid in the routine monitoring of glutathione as a biomarker for different oxidative stress-mediated diseases. Furthermore, an understanding of the in vivo bioprocessing of exogenously delivered glutathione will also aid the food industry both towards improving the longevity and profile of food products and the development of glutathione delivery products for long-term societal health benefits. In this review, we surveyed the natural plant-derived sources of glutathione, the identification and quantification of extracted glutathione from these sources, and the role of glutathione in the food industry and its effect on human health.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3