MetaboVariation: Exploring Individual Variation in Metabolite Levels

Author:

Gupta Shubbham1,Gormley Isobel Claire2ORCID,Brennan Lorraine1ORCID

Affiliation:

1. School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland

2. School of Mathematics and Statistics, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland

Abstract

To date, most metabolomics biomarker research has focused on identifying disease biomarkers. However, there is a need for biomarkers of early metabolic dysfunction to identify individuals who would benefit from lifestyle interventions. Concomitantly, there is a need to develop strategies to analyse metabolomics data at an individual level. We propose “MetaboVariation”, a method that models repeated measurements on individuals to explore fluctuations in metabolite levels at an individual level. MetaboVariation employs a Bayesian generalised linear model to flag individuals with intra-individual variations in their metabolite levels across multiple measurements. MetaboVariation models repeated metabolite levels as a function of explanatory variables while accounting for intra-individual variation. The posterior predictive distribution of metabolite levels at the individual level is available, and is used to flag individuals with observed metabolite levels outside the 95% highest posterior density prediction interval at a given time point. MetaboVariation was applied to a dataset containing metabolite levels for 20 metabolites, measured once every four months, in 164 individuals. A total of 28% of individuals with intra-individual variations in three or more metabolites were flagged. An R package for MetaboVariation was developed with an embedded R Shiny web application. To summarize, MetaboVariation has made considerable progress in developing strategies for analysing metabolomics data at the individual level, thus paving the way toward personalised healthcare.

Funder

Science Foundation Ireland

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3