Metabolic Rewiring in Tea Plants in Response to Gray Blight Disease Unveiled by Multi-Omics Analysis

Author:

Zheng Shiqin123,Du Zhenghua2,Wang Xiaxia2,Zheng Chao2,Wang Zonghua34ORCID,Yu Xiaomin2ORCID

Affiliation:

1. Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China

2. Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China

3. State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China

4. Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China

Abstract

Gray blight disease, which is caused by Pestalotiopsis-like species, poses significant challenges to global tea production. However, the comprehensive metabolic responses of tea plants during gray blight infection remain understudied. Here, we employed a multi-omics strategy to characterize the temporal transcriptomic and metabolomic changes in tea plants during infection by Pseudopestalotiopsis theae, the causal agent of gray blight. Untargeted metabolomic profiling with ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS) revealed extensive metabolic rewiring over the course of infection, particularly within 24 h post-inoculation. A total of 64 differentially accumulated metabolites were identified, including elevated levels of antimicrobial compounds such as caffeine and (−)-epigallocatechin 3-gallate, as well as oxidative catechin polymers like theaflavins, theasinensins and theacitrins. Conversely, the synthesis of (+)-catechin, (−)-epicatechin, oligomeric proanthocyanidins and flavonol glycosides decreased. Integrated omics analyses uncovered up-regulation of phenylpropanoid, flavonoid, lignin biosynthesis and down-regulation of photosynthesis in response to the pathogen stress. This study provides novel insights into the defense strategies of tea plants against gray blight disease, offering potential targets for disease control and crop improvement.

Funder

Fujian Agriculture and Forestry University (FAFU) Construction Project for Technological Innovation and Service System of Tea Industry Chain

Fundamental Research Project of Fujian Provincial Research Institute for Public Welfare, China

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Reference47 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3